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Fluid-structure interactions in a concentric cylinder are incorporated in CHARM, 
originally a hydraulic code based on a two-dimensional method of characteristics. An initiai 
test calculation illustrates that a small error in the fluid flow distribution created by structural 
motion results in a significant over-response of the fluid pressure. To improve the accuracy, a 
predictor-corrector method is developed and it is now incorporated in CHARM. In this 
method, use is made of the explicit scheme for predictor computation and an implicit scheme 
for corrector computation. It is found that the corrector computation is important especially 
to a coarse mesh model. 

1. INTR~DUOT~~N 

During a hypothetical loss of coolant accident (LOCA), a rarefaction wave created 
at a pipe break propagates into reactor internals. As the wave reaches the downcomer 
annulus, the core barrel is subjected to a hydraulic force resulting in mechanical 
deformation which in turn alters the force field. Such fluid-structure interactions 
make significant contributions to the hydraulic force exerted to the structure for 
evaluation of structural integrity [I]. 

One method widely used in reactor technology for core barrel deformation is the 
hydrodynamic mass or the virtual mass representation of fluid-structure interactions 
which is based on invicid, incompressible fluid flow- (2-51. Because of the fluid 
incompressibility assumption, this method may not be rehable in analyses of a 
LOCA transient 161. To improve this shortcoming7 recent effort has been made to 
develop the more fundamental approach, that is, to solve explicitly both strueturaE 
dynamic equations and hydraulic conservation equations, simultaneously [T--10]. For 
example, the MULTIFLEX code solves one-dimensional hydraulic conservation 
equations by the method of characteristics and the structural dynamic equations by 
the use of modal. analyses or by the direct integration method. It is shown 11 I] that 
the code indeed computes correctly not only the hydrodynamic mass but also fluid 
compression effects and the effect of structural motion of changing the sonic velocity.. 
The last effect, for example, is verified by comparison of MULTIFLEX calcuiation 
with the SRI experiment [ 121 for pressure wave propagation through water contained 
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in a plastically deforming pipe. The DAPSY(GRS) code [ 131 is reported to be based 
on the method similar to MULTIFLEX. 

For a multi-dimensional system of fluid-structure interactions, the K-FIX code 
[8], the combined YAQUIR/CYCLDYZ [9] code, the SOLA-FLEX code [IO], and 
so on have been developed (see Ref. [ 141 for a brief review of these codes and 
verifications). All of these multi-dimensional codes solve the hydraulic conservation 
equations by the finite difference method. An alternative approach is to utilize the 
method of characteristics for the hydraulic conservation equation modified to include 
variable boundaries to simulate fluid-structure interactions. Such an approach is 
taken here for the two-dimensional case, basing the hydraulics on techniques 
developed for the CHARM code [ 151. Namely, fluid-structure interactions have been 
incorporated in CHARM. A test was conducted with a simple problem in Ref. [8] 
and a numerical phenomenon unique to fluid-structure interaction system is found as 
described in the next. Briefly discussed in Section 2 is derivation of characteristic 
equations with variable boundary perpendicular to the hydraulic flow field. In 
Section 3.1, explicit difference equations are derived and the method of computation 
is tested in Section 3.2 with a sample problem whose analytic solution is given in 
Appendix A. To increase accuracy at coarse mesh spacings, a corrector calculation, 
discussed in Section 3.3, is applied to the explicit results. Following the suggestion 
given in Ref. [ 121, this corrector method is to use the implicit difference equations. 
Results of study are summarized and discussed in Section 4. 

2. TWO-DIMENSIONAL METHOD OF CHARACTERISTICS WITH VARIABLE FLUID 
THICKNESS 

In a PWR downcomer annulus, the hydraulic conservation equations can be 
reasonably described in a Cartesian coordinate system (x, y) : the x-axis for a circum- 
ferential direction and the y-axis for the axial direction. The fluid state is described by 
the pressure p, the density p, and the x- and y-direction fluid velocities u and u, 
respectively. Due to the relative motion of the barrel and the vessel, the gap D of the 
annulus varies with time. For this system the hydraulic conservation equations 
become : 

Mass Conservation, 

Momentum Conservation, 
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Energy Conservation, 

where c is the sonic velocity and spatial derivatives of the gap thickness D have been 
ignored because these magnitudes are on the order of a/c or v/c relative to the time 
derivative b. Factor T in Eq. (1) is a geometrical contribution, T= 2R,/(Ra -I-R,). 
to the volume change of annulus made by motion of the inner cylinder, where R, and 
R[; are the irmer and outer radii of the annulus. 

In order to derive characteristic equations, the above equations are written in a 
matrix form for a column vector US {putjp}, 

Then, Eq. (5.1) is transformed by a row vector AT = (a, a203u4), 

r  

ATM t$+ATMx$+ATM,$=ATs. 

Tbe condition for the characteristic is given by the eigenvalue problem, 

(5.4) 
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where 

(8-l) 

and 

The first solution of the eigenvalue problem is the eigenvalue f = 0 and the eigen- 
function AT = (0001) with which Eq. (6) becomes the material characteristic equation 

g = -p$ au av 
0 ( 1 

-+- -pc'r$ ax ay 

where 

D 

Dt,-at . ay -Z+u&+2 

(9) 

(10) 

and use has been made of Eq. (1) to eliminate derivative of density. The second eigen- 
value is continuously infinite f = AC specified by a parameter a, 1, = 1 cos a and d,, = 
1 sin a. The corresponding eigenvector is AT = (c2 --pc cos a -PC sin a 1). Then, 
Eq. (6) becomes the sonic characteristic equation, 

-$$--pccosag--pcsinaG+pc2(l-cos’a); 

- pc2 sin a cos a 2 - pc2 sin a cos a $ + pc2(1 - sin2a) $ 
aY 

= - pc2r $ - pcFx cos a - pcF,, sin a, (11) 

where 

r  

g=$+(U--ccosa)$+(v-csina)?. 
al> 

Equation (9) is the material characteristic equation and Eq. (11) is a continuously 
infinite number of sonic characteristic equations as specified by variable a. For the 
purpose of numerical computation, four sonic equations are selected with a = 0, 7~12, 
rr, and 3n/2. These equations are integrated along respective characteristics, Eqs (10) 
and (12), to derive explicit and implicit difference equations. 

These characteristics in space-time coordinate system (x, y, t) are illustrated in 
Fig. 1 for an explicit numerical scheme; the x-y plane in this figure is drawn at a time 
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FIG. 1. Characteristics for explicit scheme 

when ihe hydraulic quantities are known at the nodes indicated by open circles. (4pen 
circle 0 is the node at the present time step where the hydraulic quantities must be 
computed. In this situation, the characteristic lines intersecting point 0 intersect the 
X-J plane at closed circles l-5 for U, v > 0. Line % is the material characteristics --- 
and lines 01, 02, 03, and &i are the sonic characteristics with u = 0, IT/~, z, and 3~/2, 
respectively. 

The characteristic lines for the implicit scheme are illustrated in Fig. 2. In this 
case, the X-V plane is shown at the current time step of interest and the characteristic 
ilnes originates at point 0- at the previous time step. These lines intersect the x-y 
plane at points l+ through 5f. Line O-5+ is the material characteristics and lines -__ I___ 
O-l+, O-2+, O-3+, and O-5+ are the sonic characteristics with CY = 0, 7ij2, pi and 
342, respectively. 

The explicit and implicit difference equations are discussed in the next section; The 
explicit difference equations are used as a predictor computation and the implicit 
difference equations as a corrector computation. 

FIG. 2. Characteristics for implicit scheme. 
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3. DIFFERENCE EQUATIONS AND RESULTS OF SAMPLE COMPUTATIONS 

The characteristic equations obtained in the previous section are integrated along 
their respective characteristics to derive difference equations. The obtained difference 
equations are shown in Section 3.1 for an explicit scheme and computation 
procedures are briefly described. To test the method of computation, a sample 
problem is solved in Section 3.2 and the results are compared with the analytic 
solution in Appendix A. In order to improve the computation, implicit difference 
equations are used for corrector computation discussed in Section 3.3. 

3.1. Explicit Difjference Equations for Predictor Computations 

Explicit difference equations are obtained by integrating the characteristic equation 
along the explicit characteristic lines in Fig. 1 with the source term evaluated at the 
previous time step. For example, the material characteristic equation (9) is integrated 
along line % and the obtained difference equation is 

(13) 

where 

P,=p5-At’q (14.1) 

and 

au au +pc2 -+- . 
( ) ax a~> 

(14.2) 

The quantities with subscripts 0 and 5 are those at the points 0 and 5 in Fig. 1. AD is 
increment of the annulus gap in time step At. Similarly, the sonic difference equations 
are obtained as follows; 

a = 0 characteristic equation, 

p0 -pcu, = P, -pc2r$ 

where 

P, -pl --pm, -Atz,, (16.1) 

a = 7112 characteristic equation, 

Po-Pcv,=P,-Pc2r~, (17) 
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where 

c 

F2 =pcF Y +pc’fff 
ax 

G’ = z characteristic equation, 

p. + pm, = P, - pc’r 9, 

where 

P, --p3 + pcu, - At Y3, 

~g3 5 -pcF, + pc2 ;. , 

149 

jlB.1) 

(19) 

a = 3x12 characteristic equation, 

p. + pcv, = P, - pc2r g, 

where 
P,=p,+pcu,-Atg4, 

r 
.y4 = -pcF, + pc2 $ 

The expression for circumferential velocity uO is obtained by difference of Eqs. (15) 

00 900 180' 2700 36OC 

1 2 3 4 5 6 7 8 3 10 11 12 13 14 15 !E 17 

FIG. 3. Modeling of an infinite annulus with fluid,/structure interfacicg, (16 x 5) aode mode.1 
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and (19) and similarly u,, is computed from Eqs. (17) and (2 1). Pressure p. is derived 
by a linear combination of Eqs. (13), (15), (17), and (21). 

The obtained expressions for u,, and u,, do not have the term of fluid structure 
interaction AD/D, while the expression for p,, does. Therefore, immediate response to 
the structural deformation is variation of the pressure field but not u,, and v,. These 
velocity fields may be influenced later on via pressure field variation. 

Increment of the annulus gap, AD, at a hydraulic node n is actually structural 
deformation, -AXi, of the structural wall i interfacing the hydraulic node. The struc- 
tural deformation, vector [Xl, is determined by the equation of structural motion, 

wwl + ~~~~~I= [f(P)19 (23) 

subjected to the hydraulic force on the right-hand side, where {Ml and {K} are mass 
and stiffness matrices of the inner cylinder, respectively. The hydraulic force A(p) 
acting on the wall i is the wall area times pressure differential across the wall, Wi 
(pref-pJ. This hydraulic force and TAD/D in Eqs. (13) (15), (17), (19), and (21) 

14.90 

14.80 

14.70 

2 

% 

E 

2 14.60 

f 
E 

14.50 

14.40 

14.30 
I 

0.00 0.10 0.20 

TIME (SECONDS) 

PRESSURE AT (l-1) 

0.30 0.40 

FIG. 4. Pressure history at x = 0 of (16 x 5) node model, explicit computation. 
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FIG. 5. Velocity history at I = L/4 of (16 x 5) node model, explicit computation. 

constitute the coupling between the hydraulic and structural systems and these 
equations and Eq. (23) are solved simultaneously. In the foliowing sample problem, 
however, AD is given as a forcing function and so Eq. (23) will not be solved. This 
specification of AD precludes any interaction of the fluid back on the structure 
through the hydraulic force f(p) so that communication is in one direction only. 

In numerical computation, time step is chosen such that the hydraulic solution 
without fluid structure interactions is stable. Such a condition is discussed in 
Ref. [15], 

At < min I 
f.i c+luI + c+jvj ’ 

(243 
___ ___ 

Ax AY 

where min is the minimum value at all the nodes (i,j) in the grids made of circum- 
ferential spacing Ax and axial spacing Ay. 
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3.2. A Sample Problem 

TAKEUCHI AND SPENCER 

To test the method of computation, consider an infinite concentric cylinder with 
R, = 1.829 m and R, = 2.073 m filled with water of density p = 977.7 kg/m3 and the 
sonic velocity c = 1570. m/s under an initial pressure p0 = 14.485 MPa. A transient is 
created by a sinusoidal oscillation of the inner cylinder with an amplitude 
A = 0.508 mm and a frequency 10 Hz, w,, = 207r, 

D=D, for t < 0 

= D, -A cos 2nx/L sin w,, t for t>O 
(25) 

An analytic soution to this problem is obtained in Appendix A by solving a wave 
equation for the velocity potential. Then, the pressure and the fluid velocity are 
calculated, 

27rx 
p -pO = {a, sin k,t - a2 sin(w,t + 4,)) cos 7 (26) 
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FIG. 6. Pressure history at x = 0 of (24 x 11) node model, explicit computation. 
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and 

27lx 
u = (4, cos k,t + b, cos(w,t + Q,)i sin-Y 

L 
i2-q 

where L is the mid-point circumference and the wave vector k, = 27x/L. The first 
terms in Eqs. (26) and (27) are the transient response of acoustic wave oscillation 
with period of sonic circumferential propagation which usually decays with time due 
to friction loss in practice. In the above solution, there is no decay factor because 
such a loss is ignored in the wave equation. The second terms in Eqs. (26) and (27) 
are the stationary oscillations characterized by the frequency of the external forcing 
function w,,. The analytic solution is specified by constants 

a, = 0.3876 WPa), 

a, = 0.0301 !MPah 

b,=b,=0.251 (m/s j, 

& = $h, = 0. 

(28) 

This result is used to evaluate numerical computations in the following. 
The above problem is numerically solved with the explicit scheme discussed in 

Section 3.1. The cylindrical annulus of an infinite length is represented by (16 x Z), 
(24 X 5), and (48 X 5) node models, where (16 X 5) node model for example is 
composed of 16 circumferential nodes and 5 axial nodes (see Fig. 3). In this figure, 
the hydraulic annulus is modeled in practice by (17 x 5) nodes indicated by circles 
whose nearest neighbors are connected by solid lines. The nodal spacings are circum- 
ferentially 0.766 m and axially 0.852 m. The nodes in the 17th collumn are 
implemented to provide a proper boundary condition to the nodes in the 16th 
column; i.e., the hydraulic information in Column 17 is set equal to that in Column i. 
The boundary condition in the 1st and the 5th rows is that no axial flow is allowed, 
u = 0. The nodes in the 1st through the 16th columns interface with structural wall 
segments indicated by dashed lines. 

Initially, the fluid is motionless under a uniform pressure, 14.485 MPa. A transient 
is created by a given structural motion, Eq. (25). During the transient, a constant 
sonic velocity is maintained, c = 1570 m/s. 

Figures 4-9 illustrate the computed time histories of the pressure at x = 0 and the 
fluid velocity at x = L/4 computed by the 16-, 24-, and 4%node models. 

It is generally observed that the acoustic transient of fast oscillation damps quickly 
and then a steady oscillation remains. The acoustic oscillation is caused by the 
pressure wave propagation around the circumstance. In fact, its frequency (c/L = 
121 Hz) agrees very well with the computed frequency of the fast oscillation. The 
damping of the acoustic transient is due to the numerical dissipation (see Ref, [15 !I 
and the damping rate decreases with the smaller node spacing. In the follo~~g 
stationary transient, the time history of fluid velocity is independent of the node 
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FIG. 7. Velocity history at x = L/4 of (24 x 11) node model, explicit computation. 

spacing. However, the amplitude and the phase shift of pressure oscillation becomes 
smaller and in better agreement with the analytic solution, as the spacing decreases. 
The results are summarized in Table I in terms of constants in Eqs. (26) and (27). 

The major error appears in stationary pressure oscillation. This may be attributed 
to delayed fluid diffusion as is seen by the following discussion. In the analytic 

TABLE I 

Coefficients in Eqs. (26) and (27) Due to Explicit Computation 

Pressure term Velocity term 
-~ ~__ 

Models al @@a) a2 (MPa) ~4, W) b, (m/s) b2 (m/s) 9,, WI 

Analytic solution 0.370 0.0288 0. 0.241 0.241 0. 
(16 x 5) model 0.469 0.0793 -0.33n 0.244 0.238 0. 
(24 x 5) model 0.417 0.0565 -0.33n 0.244 0.239 0. 
(48 x 5) model 0.376 0.0370 -0.227c 0.259 0.241 0. 
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solution shown in Appendix A, time derivative of pressure field can be related to 
structural deformation and fluid diffusion, 

Suppose that ti is the exact value given by Eq. (25) but the fluid velocity is delayed 
by a phase factor 1’ from the exact solution. Then? Eq. (26) becomes 

k$Io, 
cu,cosw,t- ki-wi 

Apc21- 3 

=D, 

00 
--~-~coSWOt- 

ykgs, j  2n 

kf,-a; 
sinw,t) cos-X, 

1 k 
(30) 
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FIG. 8. Pressure history at x = 0 of (48 x 5) node modei, explicit computation, 
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FIG. 9. Velocity history at x = L/4 of (48 x 5) node model, explicit computation. 

where ye 1 is assumed. The solution of this equation is 

P--PO=- k+& ApC2W,2r (l+ (y-$)2)1’2sin(~,i-S)cos$x, 

where 

Now that (k,/cu,,)‘= 164 in the sample problem, the value of y that makes the 
amplitude of the pressure oscillation twice as large as the exact solution can be 
obtained ; 

y=O.O106 (-+l), 
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which is equivalent to the delay time t = y/w0 = 0.17 ms. The phase 6 is a&o 
calculated; 6 = 0.337~ Namely, slight delay 0.17 ms (on the order of one time step of 
(24 x 5) node model computation) in fluid diffusion creates the amplitude of pressure 
osciilation twice as large as the anlytic solution and phase shift 60”. This is the 
reason why the corrector computation is necessary. 

3.3. Implicit Dffeerence Equations for Corrector Computation 

As discussed in the previous section, the main source of error in larger spacing 
models is delayed diffusion of fluid. This can be improved by recalculating the fluid 
velocity field by a corrector method. A corrector procedure may be derived by the 
use of the impiicit difference scheme with the predictor part computed by the explicit 
difference equations 1161. In the present study, the corrector computation is 
performed below. 

The four sonic characteristic equations (11 j with c1= 0, z/2, 7c, and 37Q2 are 
integrated along the respective implicit characteristic lines shown in Fig. 2, The 
obtained results are shown below: 

14.80 

I  

14.20 I 

0.20 

TIME ISECONDS) 

PRESSURE AT (1-i) 

FIG. 10. Pressure history at x = 0 of (16 X 5) node model, predictor-corrector computation 
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FIG. 11. Velocity history at x = L/4 of (16 x 5) node model, predictor-corrector COtnPUtatiOn. 

a = 0 characteristic equation, 

PI+ -PO- -PC(U,+ - uo- )=++ +qoJ-pc2T$; 

a =-n/2 characteristic equation, 

(33) 

Pz+ -PO- - PdV2, -vo+$(F2+ +~~o&oc2r~; (34) 

a = n~ characteristic equation, 

P3+ -PO- + PC(U,+ - uo- 
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(r = 3x/2 characteristic equation, 

159 

P4+ -PC- + w(fJ4, -&++.Y“+ +~G)-pc21-~~ (36) 

In the above expressions, the quantities with subscripts I+ through 4+ are those at 
the current time step and those with O- are at the previous time step as illustrated is 
Fig. 2. Now add Eqs. (33) and (35) to get 

ztj+ -U,+ = -2cr$-3P,+ +PI+ - &4l-~ (37) 

and a similar expression is obtained for the axial fluid flow. The quantities on the 
right-hand side are computed by the predictor computation of the explicit scheme. 
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FIG. 12. Pressure history at s = 0 of (24 x 5) node model. predictor-corrector computation. 

581/40/1-11 
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The flow rates on the left-hand side are related to those at the nodes at the nearest 
neighbors of point 0+ of (i,j)th node in (x, y) coordinates. 

For simplicity, the method of computation is illustrated for the above sample 
problem. In this example, the axial velocity vanishes and so Eq. (37) is reduced 

(if 1) 
uo 

_ &-I’ 
0 

+& 1’ _ ,&$)) 

or 

(8 _ 
u, -- 

; (uf+2’+u~-2’) ( 2 q  AD;+l) _ ““1;“) 

+; ~(pbi+2)-~~-2')_(pa+l)--pbi-l)) 

I 

+ 
2 {pr+l) +if'_ (p~-l'-p~~")]]. 

(38) 

(39) 

In this expression (39), the right hand side is actually computed with the quantities 
obtained by the predictor computation. 

Computed results of the sample problem are shown in Figs. 10-15 for (16 X 5), 
(24 x 5), and (48 x 5) node models. From these curves the coefficients in Eqs. (26) 
and (27) are computed and the results are shown in Table II. 

The curves of both pressure and velocity histories are almost independent of the 
size of the node spacings. Comparison of these curves to Figs. 4-9 indicates that the 
effects of the corrector computation are very large when the spacing is large and the 
effects almost diminish at (48 x 5) node model. 

To deal with fluid-structure interaction problems, virtual mass method is widely 

TABLE II 

Coefficients in Eqs. (26) and (27) Due to Predictor-Corrector Computation 

Models 

Pressure term Velocity term 
- 

a, PfPa) a2 W’a) qp (rad) b, (m/s) b2 (m/s) 9, b-4 

Analytic solution 
(compressible fluid) 

(16 x 5) model 
(24 X 5) model 
(48 x 5) model 

Analytic solution 
(incompressible fluid) 

0.370 0.0288 0. 0.241 0.241 0. 

0.321 0.0274 -0.26~ 0.247 0.244 0. 
0.352 0.0341 -0.287r 0.244 0.241 0. 
0.397 0.0370 -0.22X 0.259 0.241 0. 
0.0 0.0287 0. 0.0 0.239 0. 
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used (see, for example, Ref. [ 171). This method is equivalent to solving the Laplace 
equation instead of the wave equation of Eq. (A.6) in Appendix A. The solutions are 
equivalent to the stationary oscillation terms with frequency w0 in Eqs. (A.?), (A.9), 
and (A.10) at the limit of C + co. The computed results are shown in Table Iii in 
good agreement with the analytic solution of wave equation because 

k, + cc),, (Lg’: , 

However, the acoustic oscillations are completely missed in the virtual mass method. 
The condition of Eq. (40) for validity of virtual mass method, therefore, applies only 
to the stationary oscillations. 

A test problem similar to the above sample problem is previously solved by K-FIX 
code [g]. The calculated results agree very well with an analytic solution [ iSi 
obtained by soiving the Navier-Stokes equation for an incompressible f&d. This 
transi.ent is, of course: the stationary oscillation and the acoustic oscillation does not 
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0.00 0.10 0.20 c.30 c.40 
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FIG. 13. Velocity history at x = L/4 of (24 x 5) node model, predictor-corrector computation. 
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FIG. 14. Pressure history at x = 0 of (48 X 5) node model, predictor-corrector computation. 

exist in the analytic solution. Similarly, the transient computed by K-FIX shows no 
acoustic oscillation. The K-FIX calculation of the stationary pressure oscillation is 
for an incompressible fluid. The absence of an acoustic oscillation in the K-FIX 
result is the correct physical consequence of the fluid incompressibility. However, K- 
FIX seems to yield better results than the present method in computing the stationary 
pressure oscillation. 

4. SUMMARY AND CONCLUSION 

In the sample problem, a concentric cyclinder is filled with water and a transient is 
created by a given sinusoidal oscillation of the inner cylinder. The response of the 
fluid system is formed of two components, transient oscillation and stationary 
oscillation. The short-lived transient is due to pressure wave propagation around the 
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FIG. 15. Velocity history at x = L/4 of (48 x 5) node model, predictor-corrector computatioc. 

circumference. After the transient oscillation died out, the stationary oscillation 
characterized by the frequency of the apphed forcing function remains. 

This stationary oscillation is the transient previously analyzed by the K-FIX code 
[g]. It is shown that this part of transient can be accounted for very well by 
hydrodynamic (virtual) mass method also. 

With the explicit method of characteristic, the transient oscillations are computed 
very well. The .difliculty encountered in the stationary part of transient is found to be 
due to the delayed diffusion of the fluid. Thus, the method of corrector computation 
is proposed to improve the fluid flow field. With this method, both types of 
oscillations are demonstrated to be computed fairly well by the method of charac- 
teristics. 

-As discussed in Section 3.2, attainment of balanced fluid flow distribution is very 
important at every time step: The pressure greatly changes in a control volume due to 
volume variation or specific volume change because the subcooled water is neariy 
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incompressible. On the same reason, slight fluid leakage creates a large pressure 
change. Such a phenomenon is unique to the system of fluid-structure interaction. 
The numerical solutions in Section 3.3 indeed demonstrate that the corrector 
computation is important especially to a large spacing model. 

Detailed inspection of the computed results reveal some defects of the computation 
method. The proposed corrector method is not ultimate and it is subject to further 
improvement in the future. However, the method is good enough to demonstrate the 
significance of the type of corrector computation for a system of fluid-structure 
interactions. 

In the above sample problem, there is no feedback of hydraulic force field to the 
structural motion. In the future, the sample problem must be slightly more 
sophisticated to include such a contribution. 

APPENDIX A: ANALYTIC SOLUTION OF THE SAMPLE PROBLEM 

The sample problem discussed in Section 3.2 is essentially one-dimensional and it 
can be solved analytically as follows. The mass conservation relation 

$ @Da de) = -p{u(8 + de) - u(B)} D, (A.11 

becomes 

(A.21 

for the annulus gap D varied by the motion of the inner cylinder, where a is the mid- 
radius of the annulus. The density derivative can be replaced by pressure derivative 
dp = +(1/c*) dp for an isentropic process and so Eq. (A.2) becomes 

(A.3) 

By means of the velocity potential 4, the fluid velocity is expressed, 

u=-l?!! 
a ae’ (A.4) 

Then, momentum conservation relation yields the expression for the pressure, 
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where p. is the initial pressure. Applying Eqs. (A.41 and (AJ) to Eq. (A.3). the wwe 
equation with fluid-structure interaction is obtained, 

where x E id. 
Solutions of Eq. (Ah) are 

where 

TACW, 
u = I__ k2 kow2 (-cos k, t $ cos coot) sin FY 

Do 0 0 

p =po + rApDc2wo 
k;! w; (ko 

2.7Lx 
sink,t-w,sino,t)cos--, 

0 L 
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